МАТЕМАТИКА (8 класс) Заключительный этап Вариант 1

1. Докажите, что не существует таких целых чисел $n \ u \ m$, что

$$n^3 + 6n^2 + 5n = 27m^3 + 9m^2 + 9m + 1$$
.

Доказательство: В равенстве

$$n^3 + 6n^2 + 5n = n(n+1)(n+2) + 3n(n+1) = 3(9m^3 + 3m^2 + 3m) + 1$$

левая часть делится на 3, а правая часть нет.

2. Найдите все числа x и y, для которых справедливо равенство:

$$2x^2 - 2xy + 5y^2 - 2x - 2y + 1 = 0.$$

Ответ: $(\frac{2}{3}; \frac{1}{3})$.

Решение: Перепишем уравнение в виде $2x^2 - (2y + 2)x + 5y^2 - 2y + 1 = 0.$

$$2x^2 - (2y + 2)x + 5y^2 - 2y + 1 = 0$$

Найдем его дискриминант $D = -(3y - 1)^2$.

При $y \neq \frac{1}{3}$ решений нет, при $y = \frac{1}{3}$ при $x = \frac{2}{3}$.

3. Два автомобиля выехали одновременно навстречу друг другу из пунктов А и В и проехали весь путь между ними с неизменными скоростями. Известно, что один из автомобилей, назовем его первым автомобилем, на остаток пути после встречи с другим автомобилем, назовем его вторым автомобилем, потратил на 18 минут больше, чем на путь до встречи, а второй автомобиль на остаток пути после встречи с первым автомобилем потратил на 12 минут меньше, чем на путь до встречи. Через сколько минут после начала движения из пунктов А и В автомобили встретились?

Ответ: через 36 минут.

Решение: Пусть точка С – точка встречи двух автомобилей;

 t_{AC} , t_{CB} — время в минутах, потраченное первым автомобилем до встречи и после встречи со вторым автомобилем;

 $t_{\it BC}$, $t_{\it CA}$ — время в минутах, потраченное вторым автомобилем до встречи и после встречи с первым автомобилем;

 v_1 , v_2 – скорости первого и второго автомобиля соответственно.

Тогда
$$\frac{v_1}{v_2} = \frac{t_{CA}}{t_{AC}}$$
, $\frac{v_1}{v_2} = \frac{t_{BC}}{t_{CB}}$. Следовательно, $\frac{t_{CA}}{t_{AC}} = \frac{t_{BC}}{t_{CB}}$.

Положим $x=t_{AC}$, тогда $t_{BC}=x$, $t_{CA}=x-12$, $t_{CB}=x+18$. Тогда получим равенство $\frac{x-12}{x}=\frac{x}{x+18}$. Отсюда следует, что $x^2 = (x - 12)(x + 18) \Leftrightarrow x^2 = x^2 + 6x - 216 \Leftrightarrow 6x = 216 \Leftrightarrow x = 36$.

4. Докажите, что для всех a > b > c > 0 выполняется неравенство

$$\frac{b-a}{b(b+1)} + \frac{c-b}{c(c+1)} + \frac{a-c}{a(a+1)} \le 0.$$

Доказательство: Так как a > b > c > 0, то

$$\frac{a-b}{a(a+1)} \le \frac{a-b}{b(b+1)}, \quad \frac{b-c}{a(a+1)} \le \frac{b-c}{c(c+1)}.$$

Складывая эти неравенства, получим

$$\frac{a-c}{a(a+1)} \le \frac{a-b}{b(b+1)} + \frac{b-c}{c(c+1)}.$$

Таким образом, неравенство

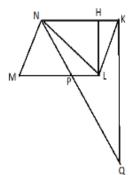
$$\frac{b-a}{b(b+1)} + \frac{c-b}{c(c+1)} + \frac{a-c}{a(a+1)} \le 0$$

является верным для всех a > b > c > 0.

5. В параллелограмме MNKL с тупым углом N на стороне ML выбрана точка P такая, что PN = MN. На продолжении NP за точку P выбрана точка Q такая, что $\angle QKN = 90^\circ$. Оказалось, что $\angle KQN = \angle KNL$. Найдите NL, если ML = 15, а одна из высот параллелограмма MNKL равна 6.

Ответ: NL=6 или $NL=6\sqrt{5}$.

Решение:



Так как $\angle NKL = \angle NMP = \angle NPM = \angle PNK$, то $\angle LKN + \angle KNL = \angle PNK + \angle KQN = 90^\circ$. $\Rightarrow \Delta NLK -$ прямоугольный. Возможны 2 случая, так как в задаче не сказано о какой высоте идет речь.

1) NL=6 ⇒ задача решена.

$$2)LH=6 \Rightarrow LH \cdot NK = 6 \cdot 15 = NL \cdot LK$$
, $NL^2 + LK^2 = 225 (NL > LK) \Rightarrow NL = 6\sqrt{5}$, $LK = 3\sqrt{5} \Rightarrow NL = 6\sqrt{5} \Rightarrow$ задача решена.

Критерии оценивания приведены в таблице:

Баллы	Критерии оценивания
7	Полное обоснованное решение.
6	Обоснованное решение с несущественными недочетами.
5-6	Решение содержит незначительные ошибки, пробелы в обоснованиях, но в целом верно и может стать полностью правильным после небольших исправлений или дополнений.
4	Задача в большей степени решена, чем не решена, например, верно рассмотрен один из двух (более сложный) существенных случаев.
2-3	Задача не решена, но приведены формулы, чертежи, соображения или доказаны некоторые вспомогательные утверждения, имеющие отношение к решению задачи.
1	Задача не решена, но предпринята попытка решения, рассмотрены, например, отдельные (частные)
	случаи при отсутствии решения или при ошибочном решении.
0	Решение отсутствует, либо решение не соответствует ни одному из критериев, перечисленных выше.