Министерство науки и высшего образования РФ Совет ректоров вузов Томской области

Открытая региональная межвузовская олимпиада

2022-2023

ФИЗИКА

9 класс

1 Вариант. II этап.

Задача 1

В сосуде с водой, имеющей температуру t=0°С, плавает льдинка массой m=50 гр. В льдинку попала и застряла выпущенная из ружья пуля, которая передала льду тепловую энергию Q=16.5 кДж. В таком состоянии лёд с дробью обладает нейтральной плавучестью. Какова масса пули M? Плотность льда $\rho_{\pi}=900$ кг/м³, пули $\rho_{\pi}=8600$ кг/м³, удельная теплота плавления льда $\lambda=330$ кДж/кг.

Примечание: Q = 14.5 кДж

Решение:

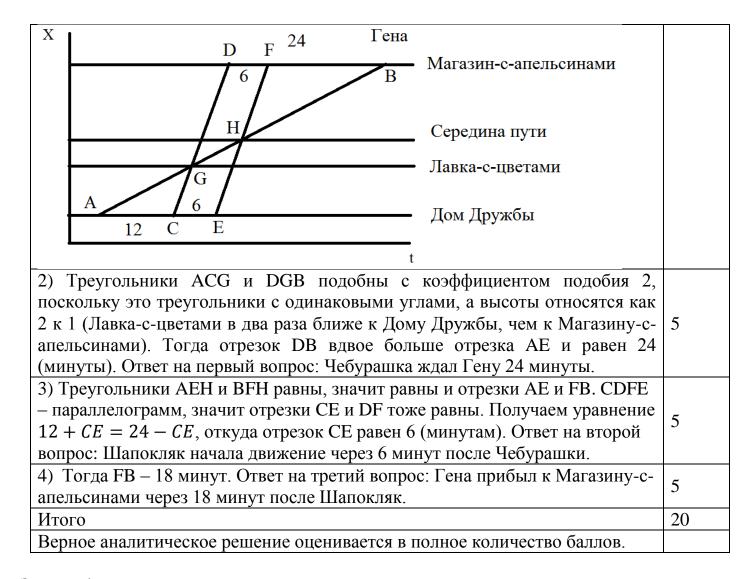
Комментарии к <u>возможному</u> решению	Баллы
После подвода тепла часть льда растаяла, поскольку лёд тоже имел	
температуру 0° С, а оставшаяся часть льда имеет массу m_1 :	2
1) $m_1=m-Q/\lambda$	
2) Если масса свинцовой дробинки равна m_{cs} , то общая масса льда и дробинки	2
равна $m_{cB} + m_1 = m_{cB} + m - Q/\lambda$,	2
3)а объём $m_{\rm cB}/\rho_{\rm cB} + (m-Q/\lambda)/\rho_{\rm льда}$.	2
4) При нейтральной плавучести объём вытесненной телом воды равен объёму	
тела, а вес вытесненной телом воды равен весу тела (идея), тогда	5
$m_{\rm CB}+m-Q/\lambda=(m_{\rm CB}/\rho_{\rm CB}+(m-Q/\lambda)/\rho_{{\scriptscriptstyle \Lambda}{\scriptscriptstyle b}\partial{\scriptscriptstyle d}})\rho_{{\scriptscriptstyle \theta}{\scriptscriptstyle O}\partial{\scriptscriptstyle b}{\scriptscriptstyle b}}.$	
5) Откуда в общем виде $m_{\text{св}} = (m - Q/\lambda) * (\rho_{sodы}/\rho_{льda} - 1)/(1 - \rho_{sodы}/\rho_{\text{св}})$	4
6) Численно $m_{c_B} = (m - Q/\lambda) * (\rho_{sodbl}/\rho_{nbda} - 1)/(1 - \rho_{sodbl}/\rho_{c_B}) \approx 6.3 \ \Gamma$	
Из-за ошибки в условии, числовой ответ не требуется. Полный балл ставится	0
при верном решении в общем виде (формула 5))	
Итого	15

Задача 2

Воздушный шар поднимался с постоянной скоростью v_0 . Когда шар был на высоте H от поверхности земли, от корзины шара отвязали мешок с песком и отпустили без начальной скорости относительно шара. Через какое время T мешок с песком упадёт на землю? Какой будет скорость v мешка при падении?

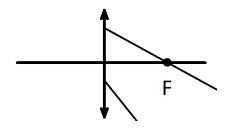
Комментарии к <u>возможному</u> решению	Баллы
1) Начальная скорость мешка с песком относительно земли равна v_0 и направленна вверх	3
2) Уравнение движения мешка с песком вдоль вертикальной оси:	3

$0 = H + v_0 T - \frac{gT^2}{2}$	
Откуда:	
$T^{2} - 2\frac{v_{0}}{g}T + (\frac{v_{0}}{g})^{2} = \frac{2H}{g} + (\frac{v_{0}}{g})^{2}$	
А время падения мешка:	3
3) $T = \frac{v_0}{g} + \sqrt{\frac{2H}{g} + (\frac{v_0}{g})^2}$ (второй корень отбрасываем, поскольку он	
противоречит физической картине задачи)	
4) Скорость камня при падении можно определить либо из уравнений	
кинематики движения камня:	
$v = v_0 - gT$	3
Либо из закона сохранения энергии:	3
$\frac{m{v_0}^2}{2} + mgH = \frac{mv^2}{2}$	
5) Окончательно скорость мешка при падении:	2
$v = \sqrt{v_0^2 + 2gH}$	3
Итого	15


Оценка заданий №№ 1 – 2 по 15 баллов

Задача 3

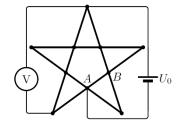
Крокодил Гена и Чебурашка собрались пойти в Магазин-с-апельсинами. Пунктуальный Гена вышел из Дома Дружбы в назначенное время и с постоянной скоростью направился в Магазин-с-апельсинами. Чебурашка же вышел из Дома Дружбы через 12 минут после оговоренного времени, и чтобы догнать Гену, побежал в сторону Магазина-с-апельсинами. Чебурашка обогнал Гену около Лавки-с-цветами и не заметив Гену, побежал дальше в сторону Магазина-с-апельсинами. Через некоторое время после того, как Чебурашка выбежал в сторону Магазина-с-апельсинами, от входа в Дом Дружбы в сторону Магазина-с-апельсинами выехала Шапокляк на велосипеде, и двигаясь с той же постоянной скоростью, что и Чебурашка, поравнялась с Геной на полпути в Магазин-с-апельсинами. Сколько времени ждал Чебурашка Гену около Магазина-с-апельсинами, если Лавка-с-цветами в два раза ближе к Дому Дружбы, чем к Магазину-с-апельсинами? Через какое время после Чебурашки начала движение Шапокляк? Через сколько времени после Шапокляк к Магазину-с-апельсинами прибыл Гена?


Указание: задачу можно решить графически.

Комментарии к возможному решению	Баллы
1) Нарисуем на графике траектории всех трёх участников движения. АВ –	5
Гена, CD – Чебурашка, EF – Шапокляк.	3

Задача 4

В архиве Снеллиуса нашли чертёж, на котором свет от точечного источника преломлялся в собирающей линзе. От времени часть чернил выцвела, и на рисунке остались видны только два луча, причём известен их ход только после преломления в линзе. По имеющемуся чертежу восстановите построением с помощью циркуля и линейки без делений положения светящейся точки и ее изображения.


Комментарии к возможному решению	Баллы
1) Построив продолжение заданных лучей (на рисунке показаны штриховой	
линией) до их пересечения, найдем точку S' - положение изображения точки	5
S.	
2) Луч FA проходит через фокус собирающей линзы, значит до преломления	
в линзе этот луч шёл параллельно главной оптической оси. Построим прямую	5
SA, параллельную главной оптической оси.	

3) Луч SO, проходящий через оптический центр линзы, не преломляется.	5
Построим прямую S'O	
4) Тогда источник S лежит на пересечении S/O и SA	5
S AA F	
Итого	20

Оценка заданий №№ 3 – 4 по 20 баллов

Задача 5

К схеме, состоящую из 15 одинаковых резисторов с сопротивлением R, подключили аккумулятор с напряжением U_0 и идеальный вольтметр Найдите ток, протекающий через аккумулятор, показания вольтметра и ток, протекающий по проводнику AB.

Комментарии к <u>возможному</u> решению	Баллы
1) Поскольку вольтметр идеальный, то его можно отключить от цепи – это не повлияет на распределение токов в оставшейся цепи. В силу симметрии оставшейся схемы, ток по резистору CD не идёт, и его можно убрать из схемы:	6
2) Сопротивление оставшейся цепи: $R_{\text{of}} = \frac{1}{2} \left(R + 2 \frac{R}{R+2R} \right) = \frac{1}{2} \left(R + \frac{4R}{3} \right) = \frac{7R}{6}$	4
Откуда:	
3) Ток, протекающий через аккумулятор: $I_{\rm o6} = \frac{U_{\rm 0}}{R_{\rm o6}} = \frac{6U_{\rm 0}}{7R}$	4
4) По левой половине схемы протекает ток $I_{06}/2$. При этом по резистору АЕ протекает ток:	2

$I_{AE} = \frac{1}{3} \frac{I_{\text{of}}}{2} = \frac{U_0}{7R}$	
5) Напряжение на резисторе АЕ:	
$U_{AE} = I_{AE}R = \frac{U_0}{7}$	2
6) Показания вольтметра:	
$U_V = U_0 - U_{AE} = \frac{6U_0}{7}$	4
7) Аналогично 4) ток, протекающий через резистор АВ:	
$I_{AB} = \frac{2}{3} \frac{I_{o6}}{2} = \frac{2U_0}{7R}$	8
Итого	30

Оценка задания № 5 – 30 баллов

Внимание!

Задача считается решённой, если, помимо правильного ответа, приведены необходимые объяснения. Решение оценивается поэтапно.

Желаем успеха!

Министерство науки и высшего образования РФ Совет ректоров вузов Томской области

Открытая региональная межвузовская олимпиада

2022-2023

ФИЗИКА

9 класс

2 Вариант. II этап.

Задача 1

В сосуде с водой, имеющей температуру t=0°С, плавает льдинка массой m=75 гр. В льдинку попала и застряла выпущенная из ружья пуля, которая передала льду тепловую энергию Q=12 кДж. В таком состоянии лёд с дробью обладает нейтральной плавучестью. Какова масса пули M? Плотность льда $\rho_{\pi}=900$ кг/м³, пули $\rho_{\pi}=7800$ кг/м³. удельная теплота плавления льда $\lambda=330$ кДж/кг.

Решение:

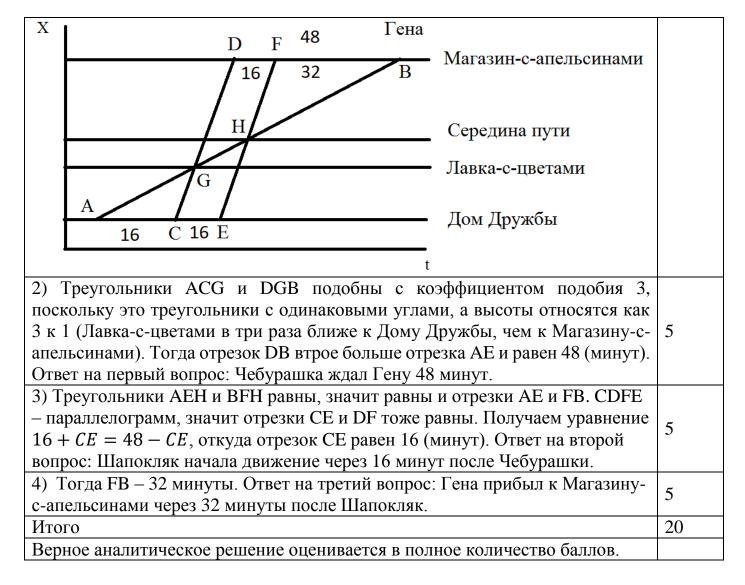
Комментарии к возможному решению	Баллы
После подвода тепла часть льда растаяла, поскольку лёд тоже имел	
температуру 0° С, а оставшаяся часть льда имеет массу m_1 :	2
1) $m_1=m-Q/\lambda$	
2) Если масса свинцовой дробинки равна m_{cs} , то общая масса льда и дробинки	2
равна $m_{cB} + m_1 = m_{cB} + m - Q/\lambda$,	
3)а объём $m_{\rm cB}/\rho_{\rm cB} + (m-Q/\lambda)/\rho_{{\scriptscriptstyle Лb}\partial a}$.	2
4) При нейтральной плавучести объём вытесненной телом воды равен объёму	
тела, а вес вытесненной телом воды равен весу тела (идея), тогда	5
$m_{\text{CB}}+m-Q/\lambda=(m_{\text{CB}}/\rho_{\text{CB}}+(m-Q/\lambda)/\rho_{\text{Льда}})\rho_{\text{воды}}.$	
5) Откуда в общем виде $m_{\rm cB} = (m - Q/\lambda) * (\rho_{soobl}/\rho_{льoa} - 1)/(1 - \rho_{soobl}/\rho_{\rm cB})$	2
6) Численно $m_{\rm cb} = (m - Q/\lambda) * (\rho_{soob}/\rho_{nb\partial a} - 1)/(1 - \rho_{soob}/\rho_{\rm cb}) \approx 9.6 \ \Gamma$	2
Итого	15

Задача 2

Воздушный шар опускался с постоянной скоростью v_0 . Когда шар был на высоте H от поверхности земли, от корзины шара отвязали мешок с песком и отпустили без начальной скорости относительно шара. Через какое время T мешок с песком упадёт на землю? Какой будет скорость v мешка при падении?

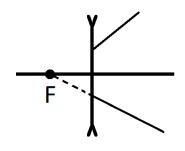
Комментарии к возможному решению	Баллы
1) Начальная скорость мешка с песком относительно земли равна v_0 и	3
направленна вниз	3
2) Уравнение движения мешка с песком вдоль вертикальной оси:	
$0 = H - v_0 T - \frac{gT^2}{2}$	3
$0 = H - v_0 T - \frac{\sigma}{2}$	
Откуда:	3

$T^{2} + 2\frac{v_{0}}{g}T + (\frac{v_{0}}{g})^{2} = \frac{2H}{g} + (\frac{v_{0}}{g})^{2}$	
А время падения мешка:	
3) $T = -\frac{v_0}{g} + \sqrt{\frac{2H}{g} + (\frac{v_0}{g})^2}$ (второй корень отбрасываем, поскольку он	
противоречит физической картине задачи)	
4) Скорость камня при падении можно определить либо из уравнений	
кинематики движения камня:	
$v = -v_0 - gT$	3
Либо из закона сохранения энергии:	3
$\frac{m{v_0}^2}{2} + mgH = \frac{mv^2}{2}$	
5) Окончательно скорость мешка при падении:	2
$v = \sqrt{v_0^2 + 2gH}$	3
Итого	15

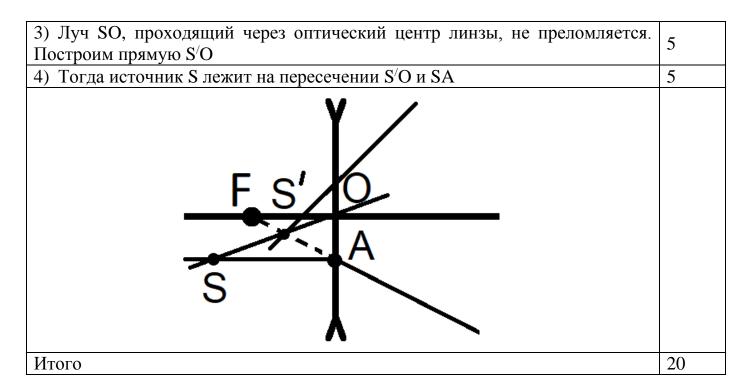

Оценка заданий №№ 1 – 2 по 15 баллов

Задача 3

Крокодил Гена и Чебурашка собрались пойти в Магазин-с-апельсинами. Пунктуальный Гена вышел из Дома Дружбы в назначенное время и с постоянной скоростью направился в Магазин-с-апельсинами. Чебурашка же вышел из Дома Дружбы через 16 минут после оговоренного времени, и чтобы догнать Гену, побежал в сторону Магазина-с-апельсинами. Чебурашка обогнал Гену около Лавки-с-цветами и не заметив Гену, побежал дальше в сторону Магазина-с-апельсинами. Через некоторое время после того, как Чебурашка выбежал в сторону Магазина-с-апельсинами, от входа в Дом Дружбы в сторону Магазина-с-апельсинами выехала Шапокляк на велосипеде, и двигаясь с той же постоянной скоростью, что и Чебурашка, поравнялась с Геной на полпути в Магазин-с-апельсинами. Сколько времени ждал Чебурашка Гену около Магазина-с-апельсинами, если Лавка-с-цветами в три раза ближе к Дому Дружбы, чем к Магазину-с-апельсинами? Через какое время после Чебурашки начала движение Шапокляк? Через сколько времени после Шапокляк к Магазину-с-апельсинами прибыл Гена?

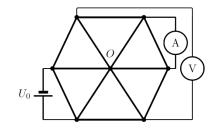

Указание: задачу можно решить графически.

Комментарии к возможному решению	Баллы
1) Нарисуем на графике траектории всех трёх участников движения. АВ –	5
Гена, CD – Чебурашка, EF – Шапокляк.	3



Задача 4

В архиве Снеллиуса нашли чертёж, на котором свет от точечного источника преломлялся в рассеивающей линзе. От времени часть чернил выцвела, и на рисунке остались видны только два луча, причём известен их ход только после преломления в линзе. По имеющемуся чертежу восстановите построением с помощью циркуля и линейки без делений положения светящейся точки и ее изображения.


Комментарии к возможному решению	Баллы
1) Построив продолжение заданных лучей до их пересечения, найдем	5
положение точки S' - положение изображения точки S .	
2) Луч FA проходит через ближний фокус рассеивающей линзы, значит до	
преломления в линзе этот луч шёл параллельно главной оптической оси.	5
Построим прямую SA, параллельную главной оптической оси.	

Оценка заданий №№ 3 – 4 по 20 баллов

Задача 5

К схеме, состоящую из 12 одинаковых резисторов с сопротивлением R, подключили аккумулятор с напряжением U_0 , и идеальные амперметр и вольтметр. Найдите показания приборов.

Комментарии к возможному решению		Баллы
1) Поскольку амперметр идеальный, то ток по резистору CD не протекает, и его можно убрать из схемы:	B C A V	5
2) В силу симметрии схемы, контакты в точке О можно растянуть, соединив перемычками, которые впоследствии можно убрать:	B C A D V	5

Откуда: 3) Ток, протекающий по резисторам CO и OD равен 0. $U_0 = \begin{bmatrix} & & & & & & & & & & & & & & & & & &$	5
4) Сопротивление схемы между контактами BE: $R_{BE} = R$	5
5) Сопротивление схемы между контактами ABEF: $R_{ABEF} = 3R$	5
6) Показания вольтметра: $U_V = \frac{1}{3} U_0$	5
7) Показания амперметра: $I_{BE} = \frac{U_V}{2R} = \frac{U_0}{6R}$	5
Итого	30

Оценка задания № 5 – 30 баллов

Внимание!

Задача считается решённой, если, помимо правильного ответа, приведены необходимые объяснения. Решение оценивается поэтапно. Желаем успеха!